E: ISSN No. 2349-9443

Asian Resonance

Synthesis and Characterization of Zirconium(IV) Complexes with 4-Amino-3-Ethyl-S-Triazole-5-Thione

Paper Submission: 23/06/2021, Date of Acceptance: 17/07/2021, Date of Publication: 22/07/2021

Abstract

Metal chelates of 4-amino-3-ethyl-s-triazole-5-thione have been prepared with Zr(IV) salts at different pH and their structure are elucidated by various physico-chemical studies. Metal-ligand vibrations in far infrared spectra have been located and tentatively assigned. Octahedral configuration have been assigned for all Zr(IV) complexes.

Keywords: Synthesis, Characterization, Zirconium, Triazole, Complexes,

Octahedral.

Introduction

Schiff bases containing polyfunctional groups offer many practical advantage of unique environment for complexation¹⁻². Triazole derivatives have interesting ligational properties and have proved to be promising chelating against a number of transition elements³⁻⁴. The present studies deals the synthesis, spectral analysis and characterization of some mixed ligand complexes of tetravalent Zr ions with 4-amino-3-ethyl-s-triazole-5thione (AESMTH) as primary ligand and pyridine as secondary ligand. Triazole contains active NH, C=S, H-N-C=S coordinating groups and has been shown that all three groups are involved in bond formation with transition metal ion in complexation.

Review of The Literature

Triazole derivatives have shown various bonding scopes⁵⁻⁶. Various workers reported on metal triazole complexes⁷⁻⁸. Versatile uses of triazole derivatives attract workers to work with it.

Objective of the study

The interaction of Zirconium(IV) with organic ligands are very interesting from structure and bonding point of view⁹ and are reported with several oxygen donor¹⁰, nitrogen donor¹¹ Schiff base and many heterocyclic thioamides¹². The present work reports this complexation study of Zirconium(IV) using 4-amino-3-ethyl-s-triazole-5-thione(AESMTH) as ligand at different pH values. The involvement of thione and thiol tautomeric form of ligand (Fig.1) is also studied. It would provide a biological study for some antifungal and many other drugs.

Experimental

All chemicals used were C.P. grade and A.R. grade sample of metal salts of Zr(NO₃)₄.5H₂O, Zr(SO₄)₂.4H₂O and ZrO(NO₃)₂.2H₂O. The ligand was prepared by the method of Dutta et al¹³. All Zr(IV) complexes were prepared using a general method. Ethanolic metal salt and ligand were mixed in an appropriate molar ratio. The mixture was refluxed on a hot plate magnetic stirrer and its volume was reduced to 50 ml. pH of the mixture was adjusted as required using pyridine/NaOH and dilute mineral acid of corresponding metal salt. The complexes obtained with different metal ligand ratios were washed with ice cooled ethanol and dried in a vacuum desiccator over anhydrous CaCl₂. The analytical results are given in table-1.

The IR spectra of ligand and complexes were recorded on a Perkin-Elmer Modle-577 spectrophotometer in the range of 4000-200 cm as KBr pellets. The magnetic measurements were made on a Gouy balance and diamagnetic corrections for the ligand molecules were applied. The U.V. and visible spectra of the ligand and complexes were recorded on a Beckmann and Carl Zeiss(Jenna) spectrophotometer. The molar conductance of complexes(10⁻³M) were measured in DMF using Wiss-Werkstatter Werthein Obb type LBR conductivity meter.

R. N. Sharma

Professor and Principal, S.H.S. Govt. P.G. College, Dhanapur, Chandauli, Uttar Pradesh, India

Yogesh Kumar Pandey

Ex Research Scholar, Dept. of Chemistry, K. N. Govt. P. G. College, Gyanpur, Bhadohi, Uttar Pradesh, India

Rajnish Kumar Chauhan

Assistant Professor. Dept. of Chemistry, P. G. College, Upardaha, Baraut, Prayagraj, Uttar Pradesh, India

Asian Resonance

E: ISSN No. 2349-9443

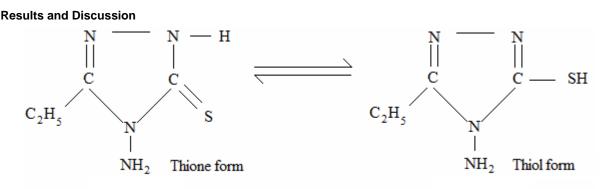


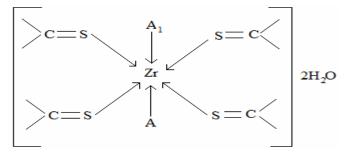
Fig. 1. 4-Amino-3-Ethyl-S-Triazole-5-Thione

Stoichiometries of the isolated compounds have been established on the basis of elemental analysis (Table-1). The compounds are fairly soluble in DMF and insoluble in non polar solvents. The electrical conductance measurement in DMF (10⁻³M) indicate that zirconoxy complexes are 1:2 electrolyte and non-oxy zirconium nitrato complexes are 1:4 electrolyte and others are non-electrolytic in nature¹⁴. All the nitrato complexes are thermally stable up to 200^oC but all sulphato complexes lose their weight on heating up to 200^oC due to presence of lattice layer water in these sulphato complexes. All reported complexes are diamagnetic as expected for d^o configuration.

Electronic spectral band of AESMTH observed at 255 nm is blue shifted (~20-25) in all Zr(IV) complexes and assigned as charge transfer bands¹⁵.

Infrared Spectra

Some IR spectral bands of interest of ligand (AESMTH) and complexes are shown in Table-02. The vSH band at 2450 cm⁻¹ of ligand (AESMTH) is disappeared in all complexes indicates the involvement of sulphur atom in coordination¹⁶. The appearance of vPy vibrational bands¹⁷ at 1605 cm⁻¹ and 635 cm⁻¹ in all pyridyl complexes indicates the presence of pyridine as secondary ligand. The four bands at region of 3260-3065 cm⁻¹ in the spectrum of AESMTH have contribution from vNH mode of vibration¹⁸⁻¹⁹. The thio amide bands are either blue shifted (~5-10 cm⁻¹) or identical after complexation indicates the intactness of NH2 and NH groups in coordination. This observation is further supported by either blue shifting (~5-10 cm⁻¹) or unperturbed in


position with higher intensity of thio amide band I, II and III indicating the absence of bonding neither through amino nor through imino nitrogen. Thio amide band I of ligand has mixed contributions from δ NH + δ CH and δ CN modes²⁰ and observed at 1570 cm⁻¹ in AESMTH. Thio amide band IV observed at 785 cm⁻¹ for ligand and have major contribution from δ C=S mode²¹⁻²². On complexation band IV is shifted to lower frequency about 15-25 cm⁻¹ due to bonding through thione sulphur due to increase of CN bond order and decrease of CS bond order on coordination²². The non ligand bands at 3480, 1610 and 830 cm⁻¹ in all aqua complexes are assigned to vH₂O, δ H₂O and π H₂O mode of vibrations respectively for all aqua Zr(IV) complexes²³⁻²⁴.

The presence of ionic nitrate is indicated by the appearance of very strong band at 1340 cm⁻¹-1350 cm⁻¹ and a medium band at 825-830 cm⁻¹ in all nitrato complexes²⁵. The appearance of fundamental mode of vibration v_3 , v_4 of sulphato group are observed at 1150 and 610 cm⁻¹ respectively indicates the presence of ionic sulphate in all reported sulphato complexes²⁶.

Some new bands are observed in far ir spectra of complexes. Three vZr-S (410-400, 370-365 and 330-320 cm⁻¹) and two vZr-O(540 and 520-510 cm⁻¹) stretching modes in complexes has shown a good agreement in normal coordinated analysis of MX_4Z_2 , $MX_2Y_2Z_2$, MX_4YZ and MX_3YZ_2 type of molecules.

Conclusion

Thus on the basis of aforesaid discussion octahedral structure is tentatively assigned for all reported complexes as given below:

Asian Resonance

E: ISSN No. 2349-9443

Table-1: Physical and analytical data of Zr(IV) complexes

S.N.	Complexes/(Colour)	M.P. (in ⁰C)	pH of isolation	Molar conductance (ohm ⁻¹ cm ² mol ⁻¹)	Analytical data(%) : Cal./(Found)			
					С	Н	N	Zr
1.	$[ZrO(AESMTH)_4(H_2O)](NO_3)_2$	215	6	54.14	23.25	4.11	30.52	11.04
	(Yellow)				(22.79)	(3.93)	(30.18)	(10.71)
2.	[ZrO(AESMTH) ₄ (Py)](NO ₃) ₂	210	7	57.12	32.33	4.74	32.33	11.74
	(White)				(32.11)	(4.31)	(31.93)	(11.09)
3.	[Zr(AESMTH) ₄ (SO ₄) ₂].2H ₂ O	196	5	5.31	21.43	4.01	25.01	10.18
	(Yellow)				(20.12)	(3.79)	(24.56)	(10.01)
4.	$[Zr(AESMTH)_3(Py) (SO_4)_2].$	159	7	6.12	24.56	3.97	21.91	10.98
	2H ₂ O				(24.13)	(3.56)	(21.26)	(10.13)
	(Brownish yellow)							
5.	[Zr(AESMTH) ₄ (H ₂ O) ₂](NO ₃) ₄	227	7	104.51	20.18	3.78	29.43	9.59
	(Golden brown)				(19.71)	(3.46)	(29.19)	(9.03)
6.	[Zr(AESMTH) ₂ (Py) ₂ (H ₂ O) ₂](NO	204	6	106.10	26.26	3.64	23.83	11.09
	3)4				(25.99)	(3.13)	(23.29)	(10.81)
	(Brownish yellow)							

Table-02: Vibrational data of Zr(IV) Complexes

S.N	Complexes	Electronic	vNH	vSH	vNO ₃	vSO₄	Thio amide band			
•		data(nm)					I	II	III	IV
1.	AESMTH	255	3260 3210 3110 3050	2450		_	1570	1390	1090	785
2.	[ZrO(AESMTH) ₄ (H ₂ O)] (NO ₃) ₂	230	3270 3240 3120 3065		1340 825		1580	1395	1095	760
3.	[ZrO(AESMTH) ₄ (Py)](NO ₃) ₂	230	3270 3240 3110 3065		1350 830		1585	1395	1095	765
4.	[Zr(AESMTH) ₄ (SO ₄) ₂]. 2H ₂ O	232	3265 3215 3120 3060			1150 610	1580	1390	1095	765
5.	[Zr(AESMTH) ₃ (Py) (SO ₄) ₂]. 2H ₂ O	233	3270 3240 3110 3060			1150 610	1585	1390	1090	770
6.	[Zr(AESMTH) ₄ (H ₂ O) ₂](NO ₃) ₄	235	3280 3230 3120 3060		1340 825		1590	1390	1095	765
7.	[Zr(AESMTH) ₂ (Py) ₂ (H ₂ O) ₂](NO ₃) ₄	230	3275 3220 3120 3060		1350 830		1575	1395	1095	760

References

- 1. N. Padmaja, M. Ravindar, M. Ramchary and S. Srihari; Indian j. Conc. Chem., 28, 8 (2011).
- 2. B. T. Thakur, K. R. Surati and S.R. Modi; Russian J. Coord. Chem., 34, 25 (2008).
- 3. R. N. Sharma, Ashok Kumar Mishra, B. Laxmi Kanth and Soni Kumari; J. Ultra Chem., 16, 78 (2020).
- 4. Adnan M. Qadir, Ali I. Abdullah, Subhi A. A. Jibor and T. K. K. Allaf; Aian J. Chem., 16, 11 (2011).
- 5. A.P. Mishra and Annapoorna Tiwari; Indian j. Conc. Chem., 28, 01 (2011).
- 6. R. N. Sharma and Sanjay Singh; Asian Resonance, 4, 73 (2015).
- 7. D. Visagaperumal, N. Anbalagan, T. V. Kiran Kumar, M. Krishnanjeneyulu, K. Ambika and D. Maduri; Inter. J. Chem. Soc., 7, 2647 (2009).
- 8. R. N. Pandey, Manju Sharma, R. N. Sharma and N. Chandrashekhar; Oriental J. Chem., 21, 569 (2005).

Asian Resonance

E: ISSN No. 2349-9443

- Sudip Das, N. K. Mitra and S. K. Shahe; Indian j. 9. Chem. Soc., 81, 531 (2004).
- 10. R. N. Sharma, Piyush Mishra, Alpana Kumari and Rajnish Kumar Chauhan; J. Ultra Sci., 18, 361 (2006).
- 11. A. K. Pandey, V. Chakravortty and K. C. Das; Thermochim, Acta, 109, 303 (1987).
- 12. B. Singh and H. N. Tiwari; Indian j. Chem. Soc., 60, 894 (1993).
- 13. S. Dutta, A. K. Acharya and U. P. Basu; Indian j. Chem. Soc., 45, 338 (1968).
- 14. P. R. Shukla, M. Bhat and Mukesh Chandra Sharma; Indian j. Chem. Soc., 66, 192 (1989).
- 15. L. Singh, D. K. Sharma and Upma Singh; Asian J. Chem., 16, 578 (2004).
- 16. K. Nakanishi; "Infrared Absorption Spectra", Holden Day, Inc. San Fransico p. 54 (1964).
- 17. R. N. Sharma, Abhimanu Yadav and Kishore Nand; Asian Resonance, 7, 1 (2018).
- 18. N. Babu; Asian J. Chem., 16, 1799 (2004).
- 19. Suresh K. Agrawal; J. Ultra Chem., 1, 65 (2005).
- 20. M. N. Chamberlain and J. C. Bailar(Jr); J. Amer.. Soc., 21, 6412 (1995).
- 21. Indrani Chakraborti; Asian J. Chem., 15, 1626 (2003).
- 22. R. N. Sharma, Piyush Mishra, Rajnish Kumar Chauhan and Alpana Kumari; J. Ultra Sci., 18, 361 (2006).
- 23. S. Ganguly, S. P. Singh and R. Chandra; Indian j. Chem. Soc., 81, 781 (2004).
- 24. M. B. Deshmukh and A. R. Mulik; Indian j. Chem. Soc., 78, 150 (2001).
- 25. R. N. Sharma, Rajnish Kumar Chauhan, A. K. Mishra, R. S. Tiwari, S. Singh and S. S. Singh; J. Ultra Sci., 3, 222 (2007).
- 26. K. Nakamoto, J. Fujita, S. Tanaka and Kobayshi; J. Am. Cherm. Soc., 79, 4904 (1957).